《比的基本性质》说课稿

时间:2024-05-21 17:19:18 说课稿 我要投稿

《比的基本性质》说课稿汇总[15篇]

  作为一位兢兢业业的人民教师,时常会需要准备好说课稿,通过说课稿可以很好地改正讲课缺点。那么什么样的说课稿才是好的呢?以下是小编整理的《比的基本性质》说课稿,欢迎阅读,希望大家能够喜欢。

《比的基本性质》说课稿汇总[15篇]

《比的基本性质》说课稿1

尊敬的各位考官:

  大家好,我是x号考生,今天我说课的题目是《分数的基本性质》。

  新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

  一、说教材

  本节课选自人教版小学数学五年级下册第四单元第三节《分数的基本性质》,是在学生初步认识了分数的意义、分数与除法的关系、以及整数除法中商不变的规律的基础上进行学习的,而本节课也是后续学习约分和通分的基础,因此理解并掌握该性质尤为重要。

  二、说学情

  接下来谈谈学生的实际情况。五年级的学生学习态度端正,有着良好的学习习惯,而且各个方面都已经发展的比较完善,具备一定的分析能力和解决问题的经验。但是还具有活泼好动的特点,所以我会采用多种教学方法。

  三、说教学目标

  根据以上对教材和学情的分析,我制定了如下三维教学目标:

  (一)知识与技能

  结合具体情境,理解分数的基本性质,会应用分数的基本性质进行分数的改写。

  (二)过程与方法

  经历自主思考、小组讨论的过程,提高观察、分析、推理、总结的能力。

  (三)情感、态度与价值观

  体验数学与生活的联系,提高对数学的学习兴趣。

  四、说教学重难点

  在教学目标的实现过程中,教学重点是分数的基本性质,教学难点是分数的基本性质的探究过程。

  五、说教法和学法

  在教学中我始终以学生为本,以学生为立足点,借助多媒体教学,引导学生动手操作、观察、探究,充分调动学生学习的积极性。本节课我将主要采用创设情境、动手操作、自主探究的教学方法,把课堂还给学生,充分调动学生的眼、手、脑等感官参与认识活动,享受学习的乐趣。

  六、说教学过程

  下面重点谈谈我对教学过程的设计。

  (一)导入新课

  首先是导入环节,我将采用创设情境的导入方法。

  熊妈妈按不同分法给三个孩子分三块巧克力,第一块平均分成两份,给老大一份;第二块平均分成四份,给老二两份;第三块平均分成八份,给老幺四份。提问:哪个孩子分的巧克力更多?然后说明通过这个故事学习一个新知识,进而引出课题。

  通过创设情境,利用一个小故事,将比较抽象、枯燥的数学知识以生动有趣的形式展示出来,一方面可以吸引学生的兴趣,有利于更好的'展开课堂教学;另一方面可以淡化学生对数学知识的陌生感,更好的体会数学来源于生活,应用于生活。

  (四)小结作业

  在课程接近尾声时,我会找学生总结今天的学习内容。这样的设置可以让学生再次回忆本节课的知识,并且提升学生的归纳总结能力。

  课后作业设置为小游戏,同桌之间分别写几个不同的分数,让对方写出与其分母不同但大小相同的分数。这样的设置不仅能进一步巩固本节课的学习,还可以活跃学生的思维。

  七、说板书设计

  我的板书设计遵循简洁明了、突出重点的原则,以下是我的板书设计:

《比的基本性质》说课稿2

  一、教材分析

  1.说教材

  《比例的意义和基本性质》是人教版小学数学六年级下册第四单元的内容,这部分内容是在学习了比的有关知识并掌握了一些常见的数量关系的基础上进行教学的,是前面“比的知识”的深化,也是后面学习解比例知识的基础,并为学习比例的应用,特别是为正、反比例及其应用打好基础。比例的知识在生活和生产中有着广泛的应用,所以本节课的知识就显得尤为重要。

  2.教学目标

  我以《新课程标准》为依据,结合小学数学教材编排的意图和学生的实际情况,拟定以下教学目标:

  (1)知识与技能目标:使学生理解并掌握比例的意义和基本性质,认识比例各部分名称,知道比和比例的区别。

  (2)能力目标:培养学生自主参与的意识和主动探究的精神,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。

  (3)情感与态度目标:在教学中渗透爱国主义教育,培养学生善于观察、勤于思考、乐于探究的学习习惯。

  3.教学重点、难点

  教学重点:理解比例的意义与探究基本性质。

  教学难点:运用比例的意义或性质判断两个比能否组成比例,并能正确地组成比例。

  二、说教法、说学法

  1.说教法

  通过前面的学习,学生已经掌握了比的知识,初步形成了一定的观察、探索、归纳的能力。因此,我采用了“自主探究”的教学模式,教学中贯彻自主性原则,重视学生学习和探索过程,注重学生的情感体验,组织、并参与学生的探究活动。

  2.说学法

  在强调教法的同时更注重学生学习方法的指导,在本节课中,我主要指导学生运用以下学习方法: 自学法。引导发现发。

  教具和学具是学生探索知识的.工具和桥梁,课前准备合适的教学具也关系到一节课的成败。因此,这节课教具准备:多媒体课件

  三、说程学过程

  课堂教学是学生获得知识、发展能力的重要途径。基于此,我设计了如下的教学流程:复习旧知,做好铺垫——教学比例的意义——教学比例的基本性质——反馈与巩固——质

  2

  (设计意图:通过对比的知识的复习,唤起了学生对已有知识的回忆,加深学生对旧知的印象;通过求比值的练习,使学生既复习了旧知,又为教学比例的意义作了巧妙的铺垫。)

  谈话:我们已经认识了比,知道怎样求比值。今天我们就根据这些知识来学习新的内容。板书课题(比例的意义和基本性质)

  (二)教学新课

  分成两部分:第一部分,教学比例的意义;第二部分,教学比例的基本性质。

  第一部分 教学比例的意义

  1.(多媒体课件出示)第40页的三幅图:天安门升国旗仪式;校园升旗仪式;教室场景。请同学们认真观察这三副图,你都知道了哪些信息?(生:都有国旗,是国家的象征,我们必须尊重它)。

  (设计意图:教师利用多媒体手段播放课件,创设大小不同的国旗引入比例的意义,主要体现知识由实际问题产生。适时地对学生进行爱国主义教育,增强他们的爱国意识)

  师:利用多媒体把图变换成三面国旗的画面,并表上长和宽的尺寸,请同学们写出他们长与宽的比。

  (比可以用两种形式表示出来,为后面的学习比例用分数形式表示做好铺垫)。

  接着追问:“两个比的比值相等

  2.动手计算,探究比例的意义

  师:接下来选取其中的两个比,求出它们的比值,你发现了什么? “那你能不能从中任选两个相同的比把它组成等式呢?”然后学生汇报。

  最后师生总结比例的意义:像这样表示两个比相等的式子叫做比例。(并板书)

  (设计意图:教学中通过观察、求比值等方式是让学生深刻地了解到,只要两个比的比值相等,就可以说两个比相等。运用黑板上的几个比例式,告诉学生象这样的式子就叫做比例,给学生直观的印象,抽象概括出比例的意义。帮助学生建立明晰的概念,把握概念的内涵。)

  3.辨析比和比例

  师:1:2是比例吗?为什么?你能把它组成一个比例吗?还可以写成什么样的形式?

  (辨析的过程其实就是学生对新知进一步理解的过程,通过1:2是比例吗?这一问题,激发学生的思维,使其自主去辨析新知与旧知的区别,从而更准确地理解比例的意义,并通过“你能把它组成一个比例吗?”问题的启动,使学生展开了更丰富的比例应用的想象空间,拓展了学生的思维。)

  4.利用新知,学以致用

  师:教学比例的意义后,及时组织练习。判断两个比是否能组成比例

  (这一环节中,不仅运用了比例的意义,而且对比的性质也有一定的运用,以培养学生从多种角度解决问题的能力。) 4 第二部分:探究比例的基本性质

  1、组织看书,认识名称

  我们已经知道比的各部分名称,那么组成比例的四个数也都有自己的名称,你们知道它们叫什么吗?自学课本41页,并汇报交流说出黑板上组成比例的四个数中各部分的名称,并板书。

  (设计意图:学生自学比例的各部分名称,把学习的主动权还给他们,既培养了他们的自学能力,又处理好了讲授与自学的关系。)

  2、进行验证,确定性质

  师:观察黑板上的比例式,你能发现比例的外项之积和内项之积之间有什么关系吗?可以动手计算。汇报交流:两个外项的积是2.4×40=96. 两个内项的积是1.6×60=96。 两个外项的积等于两个内项的积。

  师:是不是每一个比例的两个外项与两个内项都具有这种规律,请另选几个比例验证一下。(学生验证自己的发现)

  师:如果把比例写成分数形式,等号两端的分子和分母分别交叉相乘的积有什么关系?为什么?

  (将比例写成分数形式,把内项与内项、外项与外项分别用箭头连接,使学生形象的看到用分数形式表示的比例式中,如何计算两个内项及两个外项的积。)

  3、指导学生概括出比例的基本性质

  师:通过以上研究,你发现了什么?

  经过验证得出,在比例里“两个外项的积等于两个内项的积”这就是比例的基本性质。(板书)

  (设计意图:比例的基本性质是本节课的重点之一,如何突出重点是教学时首先要解决的问题。我把知识的探究过程留给了学生,让学生在自己算一算的基础上,大胆猜测,合情推理,并在教师的引导下归纳出规律性的结论,充分尊重学生主体,将学习内容“大板块”交给学生,体现了学习的自主性和主动性,有利于探究和创新意识的培养。)

  4、巩固练习

  在巩固练习环节中,第1题是对基本概念的巩固,根据比例的基本性质判断下面的比能否组成比例,并把组成的比例写出来,第2题是写出比值是5的两个比,并组成比例。第3题是用四个数组比例,这题学生在组的过程中没有方法和顺序,那么在交流过程中就需要教师去引导学生发现方法,总结规律,使学生不仅把题做对,而且指导自己更好解决问题。

  (设计意图:三个练习,每一个都在逐步地延伸,意在达到熟练运用比例的意义解决问题的能力。)

  师:学到这里,你已经学习了几种判断两个比能否组成比例的方法?

  五、质疑反思,总结评价

  1. 同学们,今天你学会了什么?

  2.你能比较一下“比”和“比例”有什么联系与区别吗?

  (使学生畅谈收获,让学生对所学的知识及时查漏补缺,同时培养学生的总结概括能力,训练学生的语言表达能力。)

  (说出比和比例的区别,有助于帮助学生建立新旧知识的联系和区别,更进一步理解新知。)

  六、说板书设计

  我的板书简洁、大方,体现了本节课所学知识的重点,展示了知识的形成的过程,使学生学到的知识更加系统化、完整化。 比例的意义和基本性质。

《比的基本性质》说课稿3

  一、说教材

  1、教学内容:九年义务教育六年制小学数学(人教版)第十一册第48页。

  2、教材所处的地位和作用:

  比的基本性质是在学生学习商不变性质、分数的基本性质、比的意义、比和除法的关系、比和分数的关系后接着学习的内容。比的基本性质是一节概念课的教学,它跟分数的基本性质、商不变性质实际上是同一道理的。所以本节课主要是处理新旧知识间的联系,在巩固旧知识的基础上进入到学习新知识。教材内容渗透着事物之间是普遍联系和互相转化的辩证唯物主义观点。学生理解并掌握比的基本性质,不但能加深对商不变性质、分数的基本性质、比的意义、比和分数、比和除法等知识的理解与掌握,而且也为以后学习比的应用,比例知识,正、反比例打好基础。

  3、教学目标:

  ①知识目标:使学生领悟并理解比的基本性质。

  ②能力目标:运用比的基本性质,让学生通过尝试来化简并探讨出不同类型比的多种化简方法,从而培养学生的应用能力和创新能力。 ③情感目标:感受生活中处处有数学,数学就在我们身边。培养学生积极、自主的学习探究兴趣,使每个学生都尝到成功的喜悦。

  4、教学重难点:

  重点:掌握比的基本性质。

  难点:运用比的基本性质化简比。

  二、说学情

  六年级学生能够在老师的指导下展开课堂活动。他们对周围的各种事物也有一定的认知能力,实践能力。小孩子的好奇心较强,就一个问题、一道题能够从多角度去思考,大胆探索。

  三、说教法

  1、激趣设疑法。

  本课一开始我便创设情境,留下悬念,吸引学生,使教学达到“课开始,趣即生”的效果。

  2、从学生已有知识背景出发,化难为易。

  比的基本性质是在学生已有的比的意义、商不变性质和分数的基本性质等旧知识的基础上学习的。因此,在学习比的基本性质前,首先引导学生回忆商不变性质及分数的基本性质,有利于同化新知,化新为旧。

  3、营造民主环境,采用启发式、讨论式教学。

  为了达到新课标指出的新教学理念,在探究化简比的方法时,我组织学生分组展开交流、讨论并及时的点拔、启发,使课堂进入师生互动、生生互动的学习氛围。

  四、说学法

  1、探究法。

  本堂课我让学生在思、讲、听、议、看并存的多种学习方式中去探究比的基本性质,鼓励学生多思、爱讲、善听。在尝试练、启发练、板演练中去探究不同类型的比的多种化简方法。使学生脑、眼、手等多种感官参与学习的全过程,从而培养学生的创新能力。

  2、游戏操作法。

  好动是儿童的天性,利用学生喜欢做游戏与好胜的心理,本节课插入一个“摘智慧果”的游戏,再次激活学生的`学习兴趣,让学生在游戏操作中巩固新知。

  五、说教学程序

  (一)创境激趣 设疑引思

  师:大家知道我们班的男女生各是多少人?男生与女生人数的比是多少?

  当学生说出男生12人,女生24人,男生与女生人数的比是12:24时,教师接着解释说他们的比也可以说是1:2。

  师:你们想知道老师的说法是否正确吗?下面老师与你们共同学习验证好不好?

  [设计意图:从学生熟悉的生活情景入手,把学生引入到现实情景中学数学,有利于让学生感到数学就在身边,对数学产生浓厚兴趣和亲切感,体现了“数学源于生活,又用于生活”的理念。]

  (二)整理旧知 轻松学新知

  师:出示三个算式:1÷2、 2÷4、 4÷8,提问:这几个算式之间有什么联系?为什么?运用了什么规律?(引出商不变性质) 如果把除法改写成分数,相应地就可以得到三个分数 、 、,请同学们想一想这三个分数之间有什么关系?为什么?运用了什么性质?(引出分数的基本性质)如果再把除法改成比,就可以得到三个比:1:2、2:4、4:8,请同学们猜想一下这三个比之间有什么关系?你是怎样验证的?

  1、让学生分组展开讨论、交流。

  2、教师启发学生从比同除法和分数的关系、比的意义或通过求比值等多角度去验证。

  3、检查小组交流结果,尽量让多位同学发言,其他同学专心听,教师注意引导学生把语言说通顺。

  4、根据学生的交流结果板书:1:2=2:4=4:8

  5、师生共同观察以上式子,着重引导学生观察比的前项、后项及比值。(先从左到右,再从右到左)。

  6、同学们通过探索,发现了其中的规律,要求同学对照商不变的性质和分数的基本性质,总结比的基本性质。

  7、板书课题:比的基本性质。提问:为什么必须零除外?

  8、学生齐读比的基本性质。

  [设计意图:建构主义认为,学习不是简单的信息积累,更重要的是新旧知识经验的相互作用以及由此而引发的认知结构的重组。因此在教学的122448

  过程中我抓住新旧知识之间的关系,帮助学生主动去建构新知。促使新旧知识的结合,化新为旧。]

  (三)巧用习题 求异创新

  1、理解“最简单的整数比”。

  师:利用商不变性质,我们可以进行除法的简算,根据分数的基本性质,我们可以把分数化成最简分数,那么应用比的基本性质,我们可以做什么呢?

  ①学生自学课本第48页找答案。

  ②师:你怎样理解“最简单的整数比”这个概念?

  ③检查学生理解程度,根据学生的回答加以解释这个概念。

  ④师:大家想知道自己掌握的程度吗?想表现一下自己吗?

  [设计意图:自然过渡,渗透学以致用的数学理念,使学生产生想用的念头,想表现自己的心理,使教学达到“课进行,趣更浓”的效果,为下面学习营造良好氛围。]

  2、出示例题。

  例1:把下面各比化成最简单的整数比。

  14:21 : 1.25:2

  ①学生自己尝试练习,教师巡视。

  ②引导学生从多方面去思考化简方法。

  ③学生上黑板演练,尽量让有不同解法的学生演练。

  ④集体归纳解题方法。并说明化简比的最后形式。以便学生把化简比和求比值进行区分。

  ⑤师:通过以上的学习,你知道为什么我们班男生与女生的比可以说成1:2吗?

  [设计意图:这部分的教学,我善于挖掘蕴涵在教材中丰富的创造性因素,充分利用教材中一题多变,一题多解,引导学生从多方面去思考,培养学生思维的灵活性、多向性以及创新能力,实现“数学算法多样化”新理念。]

  (四)检测评价 总结收获

  1629

  1、化简下列各比:

  24:28 :

  2、判断:

  (1) 0.48:0.6化简后是24:3;(2) : 化简后是1;

  (3) 1:0.4化简后是 ;

  (4) 比的前项和后项同时乘以或除以相同的数,比值不变。

  [设计意图:变化习题形式,进一步巩固运用比的基本性质化简比,以及区分化简比与求比值的不同处。]

  3、摘智慧果

  以分组的形式,要求学生在规定的时间内动手摘下“智慧果”。摘得又快又对的组获胜。最后展示学习成果。

  (用硬纸制成下表,把“智慧果”剪成苹果形,每小组一份。)

  [设计意图:在这里,通过一个小小的游戏,使学生眼、手、脑等多种感官参与学习的全过程。通过小组竞争的操作活动,又能培养学生合作精神和竞争意识,把课堂再一次推向高潮,学生的学习兴趣再一次得到激发,使教学达到“课虽尽,趣犹存”的效果。]

  (五)总 结

  1、谁能说说学了这节课后有什么收获?

  2、用比的基本性质能解决什么问题?

《比的基本性质》说课稿4

  一、说教学内容的创新处理

  《分数的基本性质》是九年义务教育六年制小学数学第十册第四单元的一个重要内容。该教学内容是以分数的意义、分数与除法的关系以及整数除法中商不变的规律这些知识为基础的。原教材先通过直观使学生了解1/2、2/4、3/6三个分数的分子、分母虽然不同,但是分数的大小是相等的。接着进一步研究这三个分数的分子和分母,思考它们是按照什么规律变化的。最后归纳出分数的基本性质。这样安排教学内容,学生的主体地位不能得到充分体现,不利于培养学生的问题意识。为此,我打算通过"折、画、想、问、用"五个环节对教学内容作如下处理。

  1.折--用三张同样大小的长方形纸条分别折出二等分、四等、八等分。

  2.画--让学生用色笔在长方形纸条上分别涂出它们的一半,并用分数来表示。

  3.想--1/2、2/4、4/8这些分数有什么关系?你还能说出和"1/2"大小相等的其他分数吧?你还能说出和"2/3"大小相等的分数吧?

  4.问--ww"1/2=2/4=/4/8"中,你发现什么?

  5.用--用已学过的"分数的基本性质"解决有关的数学问题。这样安排教学有以下几点好处:

  (1)有利于知识的迁移。

  让学生通过动手折、涂,再用分数表示,这样既帮助学生复习了分数的意义,又为学习新知识作了准备。

  (2)能发挥学生学习的主动性。

  通过学生找和"1/2"大小相等的分数,以及和"2/3"大小相等的分数,发挥学生学习的主动性,体现自主学习的精神。

  (3)提高了学生的学习能力。

  通过交流,培养学生敢于发表自己的意见,积极思考问题,积极探问题,培养学生概括问题的能力和解决问题的能力。

  二、说教学模式

  本节课起打算采用"创设情境,复习迁移--设疑激思,获取新知--深化概念,及时反馈"的教学模式进行教学。

  1.创设情境,复习迁移。

  为了发挥学生学习的主动性,使旧知识起到正向迁移的作用,首先创设了动手操作的`情境:起发给每位学生三张同样大小的长方形纸条,让学生折一折。把第一张纸条对折(也就是把这张纸条平均分成2份),把第二张纸条对折再对折(也就是把纸条平均分成4份),再把第三张3次对折(也就是把纸条平均分成8份)。接着,让学生画一画,用彩笔在等分后的纸条上分别涂出它们的一半。告诉学生,如果把每张纸条都看作单位"1",问学生:你能把涂色的部分用分数表示吗?(电脑显示三张涂色的纸条,学生分别用分数1/2、2/4、4/8表示。)

  这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知识作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,激活课堂气氛,营造良好的学习开端。

  2.设疑激思,获取新知。

  "疑是思之始,学之端"。学,就是学习问题,学怎样问问题。为此,我在上面教学的基上,引导学生逐一讨论以下问题:

  (1)1/2、2/4、4/8这些分数有什么关系?

  (学生会说这三个分数的大小相等。)

  (2)你能说出与"1/2"大小相等的其他分数吗?你还能说出与"2/3"大小相等的分数吗?

  (如果学生写错或写不出,待得出分数基本性质后再写)

  (3)从"1/2=2/4=4/8"中,你发现了什么?

  (让学生分组讨论,充分发表自己的意见,经过归纳,最后得出:分数的分子和分母同时乘以或者除以相同的数,分数的大小不变。并把这句话显示出来。)

  (4)你对上面这句话觉得有什么问题吗?

  (学生可能会提出地"相同的数"中"0"必须除外。如果学生提出不出,就由教师提出问题:相同的数是不是任何数都行?为什么?)

  最后,让学生完整地概括出分数的基本性质。(老师揭示课题)

  这样教有利于培养学生的问题意识,师生情感交融、和谐,学生积极参与,思维活跃,学习主动,为学生创设一个良好的学习氛围。

  3.深化概念,及时反馈。

  为了加深学生对分数基本性质的理解,激发学生的学习兴趣,起设计了如下练习:

  1.下面各式对吗?为什么?(让学生用手势表示对错)

  (1)3/4=6/8(2)3/8=12/2(3)3/10=1/5

  2.在()里填上合适的数。

  ()/6=()/36=8/12=2/()=()/24

  3.把2/3和10/24化成分线是12而大小不变的分数。

  4.把下面大小相等的两个分数用线连接起来。

  4/51/64/94/612/16

  3/42/320/256/368/18

  三、说教学目标

  以上各个教学环节的设计体现如下几点教学目标:

  1.知识技能性目标:让学生亲身经历"分数基本性质"抽象概括的全过程,正确理解和掌握分数的基本性质,使学生能运用分数的基本性质解决有关的数学问题。

  2.发展性目标:培养学生观察--探索--抽象--概括的能力以及迁移类推能力,渗透事物是相互联系、发展变化的辩证唯物主义观点,培养学生的数学意识、问题意识、合作意识以及应用意识。

  3.创新性目标:让学生在学习的过程中发现问题、解决问题,提高学生探索问题的能力和研究问题的能力。

《比的基本性质》说课稿5

  教学内容:人教版小学数学第十册第75页至78页。

  教学目标:

  1、通过教学使学生理解和掌握分数的基本性质,能利用它改变分数的分子和分母,而使分数的大小不变。

  2、培养学生的观察能力、动手操作能力和分析概括能力等。

  3、让学生在学习过程中养成互相帮助、团结协作的良好品德。

  教学准备:

  课件、长方形纸片、彩笔。

  教学过程:

  一、创设情境,忆旧引新

  孙悟空师徒四人来到一个小国家----数学王国,猪八戒肚子很饿, 悟空就对八戒说:“我给你10块饼,平均分2天吃完,怎么样?”八戒一听嚷道:“太少了,猴哥欺负我。”悟空眼睛一动说道:“那我就给你100块饼,平均分20天吃完,可以了吧。”八戒一听就乐了:“太好了!太好了!这回每天我可以多吃些了!”

  同学们,你们认为八戒说得有道理吗?(没道理)

  【通过学生耳熟能详的人物对话,给学生设计一个悬念,抓住学生的好奇心理,由此激发学生的学习兴趣。】

  为什么?用你们的数学知识帮他解决一下吧。(学生立式计算)

  先算出商,再观察,你发现了什么?

  被除数和除数同时扩大(或缩小)相同的倍数,商不变。

  同学们,再想一想除法与分数有什么关系,并完成这些练习吧。

  8÷15= 3÷20= 14÷27=

  二、动手操作 、导入新课

  同学们对知识掌握的真不错,为了表扬你们,我决定找三个同学来与我一同分享一个兑现。(拿出准备好的长方形纸片。)

  我们把三张纸片看成三块饼,大家比比看,每人的三块饼大小相等吗?请拿出第一块饼,我想与你每人一块,而且大小要是一样,你能做到吗?你给我的为什么是这块饼的一半呢?用分数怎么表示呢?

  我想与你每人两块,而且大小要一样大,你又能做到吗?用分数怎样表示呢?

  我如果想我想与你每人四块,你还能做到吗?这次用分数又该怎样表示呢?这三个分数大小相等吗?为什么呢?这节课,我们就来研究这个数学问题。

  【通过学生的动手操作,初步感知三个分数的大小相等,为寻找原因设置悬念,再次激发学生的学习兴趣。】

  三、探索分数的基本性质

  你们三次给我的饼大小相等吗?那么这三个分数大小怎样?可以用怎样的式子表示?( )

  1、观察一下这个式子,3个分数有什么不同?有什么地方相同?分数的大小为什么会不变呢?要弄清楚这个问题,我们必须先观察分数的分子、分母是怎样变化的。你们能从商不变的规律,分数与除法的关系中找出它们的变化规律吗?

  2、学生交流、讨论并汇报,得出初步分数的基本性质。

  分数的.分子、分母同时乘以或除以相同的数,分数的大小不变。

  3、将结论应用到

  (1)先从左往右看, 是怎样变为与它相等的 的?分母乘2,分子乘2。

  (2)由 到 ,分子、分母又是怎样变化的? (把平均分的份数和取的份数都扩大了4倍。)

  (3)是怎样变化成与之相等的 的?

  (4)又是怎样变成 的?(把平均分的份数和取的份数都缩小了4倍。)

  4、综合以上两种变化情况,谁能用一句话概括出其中的规律?你觉得有什么要补充的吗? (不能同时乘或除以0)为什么?

  5、这就是今天我们所学的“分数的基本性质”(板书课题,出示“分数的基本性质”)。学生读一遍,你认为哪几个字特别重要?(相同的数、0除外)相同的数,指一些什么数?为什么零除外?

  四、知识应用(你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?)

  有位老爷爷把一块地分给三个儿子。老大分到了这块地的 ,老二分到了这块地的 。老三分到了这块的 。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

  分数的分子和分母同时乘或者除以相同的数,分数的大小不变。( )

  分数的分子和分母同时乘或者除以一个数(零除外),分数的大小不变。( )

  分数的分子和分母同时乘或者除以相同的数(零除外),分数的大小不变。( )

  ⒍小结。

  从判断题中我们可以看出,分数的基本性质要注意什么?学到这儿,大家想一想,我们以前学过的什么性质跟分数的基本性质类似?谁能用整数除法中商不变的性质来说明分数的基本性质?

  【此过程主要由学生通过观察、比较,得出这三个分数大小相等的规律,由此牵引到其他的有同等规律的分数中,从而引出分数的基本性质:分子、分母是同时变化的,是同向变化的(是扩大都扩大,是缩小都缩小),是同倍变化的(扩大或缩小的倍数相同)。只有这样变化,分数的大小才不会变。】

  五、巩固练习

  ⒈卡片练习:

  ⒉做P96“练一练”1、2。

  ⒊趣味游戏:

  数学王国开音乐会,分数大家族的节目是女声大合唱,只有几分钟就要演出了,请大家赶紧帮合唱队的成员按要求排好队。

  要求:第一排是分数值等于 的,第二排是分数值等于 的,还有一位同学是指挥,他是谁?你是怎样想的?

  【通过练习,让学生加深对分数的基本性质的理解,为下节课分数的基本性质的应用打好坚实的基础。】

  六、课堂总结

  这节课你学到了什么?什么是分数的基本性质?你是怎样理解的?

  七、布置作业

  做P97练习十八2。

《比的基本性质》说课稿6

  教学目标

  (一)理解和掌握分数的基本性质。

  (二)能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。

  (三)培养学生观察、分析和抽象概括的能力,渗透事物是相互联系,发展变化的辩证唯物主义观点。

  教学重点和难点

  (一)理解和掌握分数的基本性质。

  (二)归纳分数的基本性质,运用性质转化分数。

  教学用具

  教具:投影片,三张相同的长方形纸,一面为白色,另一面分别给

  学具:每位同学准备三张相同的长方形纸片。

  教学过程设计

  (一)复习准备

  1.口答:(投影片)

  根据120÷30=4,不用计算直接说出结果:

  (120×3)÷(30×3)=();(120÷10)÷(30÷10)=()。

  2.说一说依据什么可以不用计算直接得出商的?

  3.说出商不变的性质。

  教师:分数有一条类似于除法有商不变性质的性质,即分数的值不变。当一个分数被化简或扩大倍数时,它的值不会改变,只是表达的方式不同而已。这是因为分数是由分子和分母组成的,它们之间的比例关系确定了分数的值。因此,无论分数怎样化简或扩大倍数,只要分子与分母的比例不变,分数的值就保持不变。

  (二)学习新课

  1.分数基本性质。

  (1)教师取出一张长方形白纸,说明这为单位“1”,再取出同样的两张白纸,重叠放在一起请学生观察,问:三张纸重叠后完全重合,说明什么?(三个单位“ 1”同样大)教师把三张纸分贴在黑板上。

  教师请同学取出自己准备的三张长方形纸,并比一比是不是同样大。

  教师:分别将这些形状平均分成2份,4份和6份,并在其中的1份,2份和3份上标记颜色或填充阴影。然后用分数表示涂色部分。

  学生口答后,老师把黑板上的纸片翻面,露出涂了色的一面,板书:

  教师:请比较这三个分数的大小?

  你根据什么说这三个分数相等?

  学生口答后老师用等号连结上面三个分数。

  (2)教师:这几个分数的分子和分母都不相同,但三个分数的大小是相等的,下面我们来研究在保持分数大小不变的情况下,分子分母的变化有没有什么规律?

  (3)请根据上面的研究,说一说你发现了什么规律?请概括地说一说。

  2.把一个分数化成大小相等,而分子或分母是指定数的分数。

  分子应怎样变化?谁随着谁变?

  化?谁随着谁变?

  教师:上面两个分数的变化依据是什么?

  (2)口答练习:(学生口答,老师板书。)

  教师:利用分数基本性质,可以把分数化成大小相等而分子或分母是指定数的分数。

  (三)巩固反馈

  1.口答:(投影片)

  2.在括号里填上“=”或“≠”。(投影)

  3.在()里填上适当的数。(投影)

  4.判断正误,并说明理由。

  (四)课堂总结与课后作业

  1.分数基本性质。

  2.把分数化成大小相同而分子或分母是指定数的分数的方法。

  3.作业:课本108页练习二十三,1,2,4,5。

  课堂教学设计说明

  分数基本性质是指在分数的大小不变的情况下,研究分子和分母的变化规律。在教学中,可以通过引导学生观察、对比、分析分数的变化,让他们在变化中发现规律、总结分数的基本性质。设计思考题可以帮助学生运用规律来改变分数。通过这样的`方式,可以加深学生对分数基本性质的理解。

  学生掌握了分数的基本性质之后,可以通过举例讨论的方式来加深对商不变性质的理解。通过让学生举例讨论,可以帮助他们更好地理解分数的基本性质和商不变性质之间的内在联系,从而更好地将新旧知识融合在一起。

  在整个学习过程中都是学生活动为主,这样有利于培养学生观察、分析和抽象概括的能力。

  新课教学分为两部分。

  学生将通过一系列的活动来学习分数的基本性质。首先,他们会通过实际操作认识到分子、分母不同的分数可能是相等的,从而培养他们的直观认识。接着,通过观察和总结,学生将探索分子和分母的变化规律,从而深入理解分数的运算规律。最后,学生将总结分数的基本性质,并通过商不变性质来解释这些性质的重要性。

  第二部分是应用分数基本性质,使分数按要求进行变化。分两层,根据分母需要,确定分子、分母需要扩大或缩小的倍数;根据分子需要,确定分子、分母需要扩大或缩小的倍数。

《比的基本性质》说课稿7

尊敬的各位评委、老师:

  大家好!

  很高兴能把《不等式的基本性质》一课的教学设计向大家作一展示。下面我将从教材分析、教学目标、教学方法、教学流程、教学评价和教学反思几个方面来阐述我对本节课的安排。

  一、教材分析

  1. 教材的地位和作用

  不等式是初中代数的重要内容之一,是已知量与未知量的矛盾统一体。数学关系中的相等与不等是事物运动和平衡的反映,学习研究数量的不等关系,可以更好地认识和掌握事物运动变化的规律。“不等式的性质”是学生学习整个不等式知识的理论基础,为以后学习解不等式(组)起到奠基的作用。本课位于湖南教育出版社义务教育课程标准实验教科书七年级上册第五章第一节的内容,主要内容是让学生在充分感性认识的基础上体会不等式的性质,它是空间与图形领域的基础知识,是《不等式》的重点,学习它会为后面的学习不等式解法、不等式的计算等知识打下坚实的“基石”。同时,本节学习将为加深“不等式”的认识,建立空间观念,发展思维,并能让学生在活动的过程中交流分享探索的成果,体验成功的乐趣,把代数转化为数轴,提高运用数学的能力。

  2.教学重难点

  重点:不等式的概念和不等式的基本性质1。

  难点:利用不等式的基本性质1进行简单的变形。

  二、教学目标

  知识目标:

  在了解不等式的意义基础上,掌握不等式的基本性质1。

  能力目标:

  ①通过观察、思考探索等活动归纳出不等式的性质,培养学生转化的数学思想,培养学生动手、分析、解决实际问题的能力。

  ②通过活动及实际问题的研究引导学生从数学角度发现和提出问题,并用数学方法探索、研究和解决问题,培养学生的数感,渗透数形结合思想。

  情感目标:

  ①感受数学与生活的紧密联系,体会数学的价值,激发学生学习数学的兴趣,培养敢想、敢说、敢解决实际问题的学习习惯。

  ②通过“转化”数学思想方法的运用,让学生认识事物之间是普遍联系,相互转化的辩证唯物主义思想。

  通过学生体验、猜想并证明,让学生体会数学充满着探索和创造,培养学生团结协作,勇于创新的精神。

  三、教学方法

  1、采用激趣——探究法进行教学,师生互动,共同探究不等式的性质。通过知识类比,合理引导等突出学生主体地位,让教师成为学生学习的组织者、引导者、合作者,让学生亲自动手、动脑、动口参与数学活动,经历问题的发生、发展和解决过程,在解决问题的过程中完成教学目标。

  2、根据学生实际情况,整堂课围绕“情景问题——学生体验——合作交流”模式,鼓励学生积极合作,充分交流,既满足了学生对新知识的强烈探索欲望,又排除学生学习数轴陌生和学无所用的思想顾虑。对学习有困难的学生及时给予帮助,让他们在学习的过程中获得愉快和进步。

  3、充分利用多媒体课件辅助教学,突出重点、突破难点,扩大学生知识面,使每个学生稳步提高。

  四、教学流程

  我的教学流程设计是:从创设情境、激发兴趣开始,经历探究新知、总结规律;针对练习、学习例题;巩固提高、拓展延伸;畅谈收获、分层作业等过程来完成教学。

  (一)创设情境,激发兴趣:

  师生欣赏拔河比赛图片,让学生观察、思考从人数上看有什么不同点。并预测比赛的结果。从而自然的引入本节课的学习。

  设计意图:通过图片展示,贴近学生生活,激发学生的学习兴趣。让学生知道数学知识无处不在,应用数学无时不有。符合“数学教学应从生活经验出发”的新课程标准要求。

  学习目标:

  1、 理解不等式的基本性质1。

  2、 会解简单的不等式。

  此时我出示本节课的学习目标和归纳出不等式的概念:

  归纳:用不等号“﹥”(或“﹤”、“≥”、“”)连接的式子叫做不等式。符号“≥”读作“大于或等于”,也可读作“不小于”;符号“”读作“小于或等于”,也可读作“不大于”读如a≥0表示a>0或a=0,形如3≠4,a≠b的式子,也叫不等式。

  (二)探究新知、总结规律

  在这个环节,我主要设计了以下二个活动来完成教学任务:

  活动1:1、你能用“﹤”或“﹥”填空吗?

  (1)5﹥3 (2)6﹥4

  5+2﹥3+2 6+a﹥4+a

  5-2﹥3-2 6-a﹥4-a

  2、(1)自己写一个不等式,在它的两边同时加上、减去同一个数或代数式,看看有什么结果?

  (2)小组合作讨论交流,大胆说出自己的“发现”。

  本次活动以2组精心设计的填空题,让学生通过观察有限个不等式的变化,发现并归纳不等式的性质,进一步培养学生的抽象概括能力及合情推理能力。

  活动2:你能用自己的语言概括不等式的性质吗?

  本活动中,我出示直观深刻的天平图片,组织学生分组讨论,给每个学生提供发言机会,让每一个学生都尝试用自己的语言概括结论,锻炼学生语言表达能力及抽象概括能力,然后归纳指出不等式的基本性质1:

  不等式的两边同时都加上(或都减去)同一个数或同一个代数式,不等式的方向不变。

  当学生概括出结论后,为了使学生对不等式的基本性质1有更全面深入的了解,我还可以提出以下问题,让学生思考:

  性质中的“不等号方向不变”的`含义是什么?

  使学生经一步明确:“不等号方向不变”是指如果原来是“﹤”,那么变化后仍是“﹤”。

  在活动中,我深入小组,引导学生通过类比等式性质的表示方法,表示出不等式的性质,并注意规范学生的数学语言。

  通过用符号语言表示不等式的性质,有助于让学生体会到用字母表示数的优越性,发展学生文字语言与符号语言相互转化能力和符号感。

  设计意图:猜想、交流、归纳,符合知识的形成过程,培养学生转化的数学思想,学会将陌生的转化为熟悉的,将未知的转化为已知的。并用练习及时巩固,落实新知与方法,增强学生运用数学的能力。加强学生运用新知的意识,培养学生解决实际问题的能力和学习数学的兴趣,让学生巩固所学内容,并进行自我评价,既面向全体学生,又照顾个别学有余力的学生,体现因材施教的原则。

  (三)针对练习、学习例题

  1、在这个环节我先是设计了一个练习题,通过练习,进一步巩固了学生的新知,又加深了他们的理解,为学习例题奠定了基础。

  如果x-5>4,那么两边都 ,可得到x>9

  2、学习例题环节我采用了学生单独完成的方法来进行,因为有了前面的基础,学生很容易的就可以完成例题的解题过程,教师只需强调注意的事项即可。

  例1.用“>”或“<”填空

  (1)已知a>b,a+3 b+3; (2)已知a>b,a-5 b-5。

  解:

  【小结】解此题的理论依据就是根据不等式的基本性质1进行变形。

  例2.把下列不等式化为x>a或x

  (1)x+6>5 (2)3x>2x+2

  解:

  【归纳】把不等式的某一项变号后移到另一边,称为移项,这与解一元一次方程中的移项相类似。例题完成后,要求学生讲解解题思路,以进一步加深理解。

  (四)巩固提高、拓展延伸

  在这个环节我呈梯度形式设计了不同层次的练习题,针对不同层次阶段的学生,都要求他们完成符合自身实际的题目,以便获得成功的体验,进一步提高学习兴趣。

  1、课本P133练习第1、2题;

  2、判断是非:

  ①若a>b,则a-3>b-3 ( )

  ②若m

  ③若a-8

  ④若x>7,则x-4<3 ( )

  (五)畅谈收获、分层作业

  回顾本节课不等式性质的探索过程和解不等式的方法,谈谈你的心得体会。

  1.不等式的概念和基本性质1.

  2.简单不等式的变形.

  通过学生归纳本节课的主要内容、交流学习过程中的心得体会,使学生对本节课的知识进一步加深了理解,同时积累了学习经验,体会到了数学的思想方法。

  最后是作业设计:

  1、看书P132—P133(补全书上留白,划出重点内容,完成读书笔记);

  2、习题5.1A组第1题(1)(2),第3题(1)(2);

  3、选作:习题5.1B组第1题。

  五、教学评价

  本节课的教学设计,依据《新课程标准》的要求,立足于学生的认知基础来确定适当的起点与目标,内容安排从不等式的意义到不等式的性质的发现、论证和运用,逐步展示知识的过程,使学生的思维层层展开,逐步深入。在教学设计时,利用多媒体辅助教学,展示图片和动画,使学生体会到数学无处不在,运用数学无时不有。以动代静,使课堂气氛活跃,面向全体学生,给基础好的学生充分的空间,满足他们的求知欲,同时注重利用学生的好奇心,培养学生的创新能力,引导学一从数学角度发现和提出问题,并用数学方法探索、研究和解决,体现《新课标》的教学理念。

  六、教学反思

  1.本节课通过学生自主探讨、小组合作得出不等式的概念和性质1.

  2.本课设计以问题为载体,探究为主线,培养学生的自主、动手、合作交流能力。

  谢谢大家!

《比的基本性质》说课稿8

  一、讲教材

  1.教学内容:

  《比例的意义和基本性质》是人类教育版第十二册第三单位第一、二课时的内容。比例知识广泛应用于工农业生产和日常生活中。这部分知识是在学习比例知识、除法和分数的基础上教授的。本课程的内容是本单位的第一节课,主要属于概念教学,准备解决未来的比例,解释正反比例。学生学习这部分知识,不仅可以初步接触函数的想法,还可以用来解决日常生活中的一些具体问题。

  2、教学目标:

  以下教学目标可根据新课程标准的要求和教材的特点,结合六年级学生的实际水平确定:

  (1)通过计算、观察和比较,让学生总结和理解比例的意义和基本性质。

  (2)了解比例各部分的名称。

  (3)学会用比例的意义或基本性质来判断两个比例是否能形成比例,并写出比例。

  教学重、难:

  要理解比例的意义和基本性质,我们将判断比例的意义和基本性质是否可以形成比例,并写出比例。

  四、教法、学法:

  根据本节教材的内容和安排特点,为了更好地突出重点和难点,遵循以教师为主导、以学生为主体、以培训为主线的指导思想,主要让学生在计算观察、比较、总结、应用的学习过程中掌握知识。

  二、说程序设计

  课堂教学是学生获得数学知识和发展能力的重要途径。基于此,我设计了以下教学设计。

  (一)复习导入

  让学生根据给出的信息写两个比例。目的是为新教学铺平道路,搭建脚手架,为学生区分比例和比例奠定基础。

  (二)教新课

  分为两部分:第一部分,教学比例的意义;第二部分,教学比例的基本性质。

  第一部分:首先显示几个比例,让学生计算他们的比例,然后通过观察和比较对这些比例进行分类。通过学生自己的观察和发现,根据比例是否相等进行分类。然后问:两个比例的比例是相等的,那么它们之间可以连接到什么符号呢?这是为了让学生深刻地理解,只要两个比例的比例相等,就可以说两个比例相等。使用黑板上的`几个比例,告诉学生这样的公式被称为比例,给学生一个直观的印象,然后列出一个反例,让学生比较观察,引导学生发现他们之间的共同特征,抽象地总结比例的意义。教学比例的意义后,及时组织实践。第一个是判断导入部分的四个比例是否可以形成比例,并解释原因。第二个练习是判断两个比例是否可以形成比例。在这个过程中,不仅使用了比例的意义,而且对比的性质也有一定的应用,以培养学生从多个角度解决问题的能力。第三个练习是每个比例的延伸,每个练习都是为了解决问题的能力。

  第二部分:当我知道比例的名称时,我让学生看课件自学,然后让他们谈谈比例的名称。

  在揭示比例的基本性质时,我先让学生计算,然后观察和发现规则,进一步验证规则,最后总结比例的基本性质。

  (三)巩固练习

  在巩固实践过程中,第一个问题是三个判断问题,即巩固基本概念。第二个问题是根据比例的基本性质写出比例。这里需要从学生逆向思维的角度来解决问题。第三个问题是使用四个数组的比例。学生在小组过程中没有方法和顺序。在沟通过程中,教师需要引导学生找到方法,总结规则,使学生不仅能正确地解决问题,还能引导自己更好地解决问题。第四个问题是扩展问题,让学生根据当前的知识猜测,一方面巩固知识的意义和基本性质,另一方面,为下一节课解决比例铺平道路:根据比例的基本性质,如果你知道任何三个比例,你可以找到另一个,这是下一节课要研究的解决比例。

  教学反思

  有意义的数学学习必须以学生的主观愿望和知识经验为基础。有效的数学学习活动不能仅仅依赖于模仿和记忆。实践、独立探索和合作交流是学生学习数学的重要途径。在教学中,我有效地处理了教科书,让学生理解比例的意义,探索比例的基本性质,了解生活的比例,进一步认识到数学在生活中的广泛应用,激发学生学习数学的信心和积极情绪。

  一、创设探究空间,经历探索过程

  我大胆地组织学生探索比例的基本性质,没有根据教科书中提供的现成问题你发现了什么分别计算两个外项和两个内项的比例?机械地实施,但大胆地放手,用四个数组成等式的开放实践产生新鲜有用的教学资源。通过引导学生进行讨论和有效的探索,我经历了探索的成功。

  二、找到知识与生活的契合点,学以致用

  为了充分体现数学知识与现实生活的联系,我在课堂结束时安排了与生活相关的数学问题,让学生测量我们学校旗杆的高度,将数学与现实紧密联系起来,这不仅渗透了学习数学的教学理念,而且潜移默化地帮助学生树立学习文化知识有利于社会发展的意识

《比的基本性质》说课稿9

  尊敬的各位老师:

  大家好!我是泰山小学的高崇辉老师,我今天说课的题目是比的基本性质。

  首先,我来说一说教材,我讲的是九年义务教育五年制小学数学第九册63页比的基本性质,教材是在学生已经掌握了比和分数、比和除法的关系以及分数的基本性质和除法的商不变的规律的基础上进行教学的,根据本节课知识在教材中的地位和作用以及学生的认识发展规律,我确定了本节课的教学目标:

  1、通过自主探索、比较类推出比的基本性质,掌握化简比的方法,并会利用比的基本性质把一个比化成最简单的整数比。

  2、培养学生的迁移类推、抽象概括能力。

  3、引导学生揭示知识间的联系,向学生进行对立统一的辩证唯物主义教育。

  并将理解并掌握比的基本性质,作为本节课的教学重点,应用比的基本性质把比化成最简单的整数比作为本节课的教学难点,在教学中我主要采用了探究学习的方法,教学媒体的使用:多媒体。

  接着我来说一说本节课的教学过程和设计意图。

  一、创造生活情境,激发学生学习兴趣

  上课伊始我询问学生:ldquo;同学们喜欢喝蜂蜜水吗?rdquo;大部分同学会说愿意并会表示他们愿意喝更甜一些的。这时我会适时的向学生说明其实小明同学和大家一样也喜欢喝甜的蜂蜜水,这不小明的妈妈给小明准备了两杯蜂蜜水,但只能选择其中的一杯,哪杯甜呢?这下难坏了小明,聪明的同学们,你们愿意帮助他吗?电脑演示多媒体课件演示:第一杯360毫升的水,40毫升蜂蜜;第二杯180毫升的水,20毫升蜂蜜;同学们会兴致盎然,想尽各种办法帮助小明。有的同学会根据商不变的规律确定选哪杯都可以,因为360毫升的水是40毫升蜂蜜的9倍,180毫升的水是20毫升蜂蜜的9倍即360divide;40=180divide;20;有的同学会根据分数的基本性质确定选哪杯都可以,因为40毫升蜂蜜是360毫升水的九分之一,20毫升蜂蜜是180毫升水的九分之一即40/360=20/180,学生会想尽各种办法帮助小明解决这个问题。

  这部分的设计意图是每一个学生都是热情的,都是乐于助人的,尤其是愿意帮助同学解决问题,因此一听说帮助同学,学生会产生极大的兴趣兴趣就是学生思维的原动力,只要有兴趣,就会产生创造性的源泉。另外同学的困难又是学生熟悉的生活情境,这有利于学生凭借生活经验主动探索,实现生活经验数学化,同时感受到ldquo;数学源于生活rdquo;。

  二、引导学生发现规律,总结比的基本性质

  1、 猜想规律

  师:刚才同学们利用商不变的规律,分数的基本性质帮小明解决了问题。你们还记得它们的内容各是什么吗?

  学生在师生互动,生生合作中说出商不变的规律,分数的基本性质的内容。屏幕出示文字内容。

  我接着询问在分数的基本性质里,有哪些词很关键?在商不变的性质里,有哪些关键词?缺少他们行吗?为什么?

  这回你们又会想到什么呢?(比的基本性质)那么,比的基本性质该是怎样的呢?本节课我们就一起来研究探讨它。

  (板书课题:比的基本性质)

  2、 实践探究

  师:观察除法的基本性质(手指向商不变性质)与分数的基本性质,猜一猜,想一想,比的基本性质应该是怎样的呢?把你的想法在小组里说一说。

  (1)小组讨论

  (2)汇报结果:学生根据讨论结果发表意见。

  (3)师生共同总结比的基本性质的内容。

  (4)强调

  学习了比的基本性质,你认为哪些词语是很重要,你想提醒同学们注意点什么?(同时、相同、0除外)

  这一部分的设计意图是先通过学生回忆已学旧知,进而猜想比的基本性质,放飞了学生思维,让他们自主地依据已有知识经验,在观察、合作、猜想、交流中展开合理的想象与多角度思考,在有理有据表达、建立在对意义求真求准的对比中生成、完善了概念。也让学生体会到充分利用已有知识自学新知的学习方法,进一步弄清了比、除法、分数之间的联系与区别。然后通过引导学生用语言描述,共同完善比的基本性质,使学生在这一过程中,领悟了利用旧知学习新知的学习方法,沟通了知识间的联系,又培养了学生初步的类比推理能力。

  三、 教学例1

  1、说明。利用商不变性质,我们可以进行除法的简算;根据分数的基本性质,我们可以把分数约分成最简分数(板书:最简分数)。同样,应用比的基本性质,可以把比化成最简单的整数比。(板书:最简单的整数比)

  2、讨论:怎么理解ldquo;最简单的整数比rdquo;这个概念?在小组里议一议。

  3、指名汇报,形成共识:

  ㈠必须是一个比;㈡前项、后项必须是整数,不能是分数或小数;㈢前项与后项互质。

  4、化简比

  出示例1把下面各比化成最简单的整数比。

  (1)14:21 (2)1/6 :2/9 (3)1。25:2

  学生板演,其余同学各抒己见说出不同方法。

  师生共同总结整数比、分数比、小数比的化简方法。

  这一部分的设计意图是ldquo;最简单的整数比rdquo;是本节课教学的难点。这里摒弃了由典型的个例入手解释ldquo;最简单整数比rdquo;的从特殊到一般的认识过程,采用让学生先讨论、后汇报对这个概念的理解认识的方法,让学生在独立思考、互动交流中自发地尝试利用已有的知识来解读新概念。同时,教师试图通过对较简单的整数比的化简,给学生一个运用性质解决具体问题的范例,为前后项是分数、小数的比的化简作了ldquo;跳一跳,可摘到果子rdquo;式的充要铺垫。学生在小组内部交流基础上进行组间的合作交流,让每个学生充分展示自己的思维方法及过程,相互讨论分析,提示知识规律和解决问题的`方法,在合作中学生互相帮助,实现学生互补,增强合作意识,提高交往能力,使学生思维进入高潮。

  四、实践运用

  我设计了四部分练习题。

  第一部分填空题包括3道题:

  1、3:8=(3times;2):(8times;□)

  2、15:10=(15divide;□):(10divide;5)

  3、5:3=(5times;□):(3times;□)

  这一部分的设计意图是学生加深对比的基本性质的理解,尤其是最后一题使学生在填空过程中体会到可以填ldquo;除0以外的所有相同的数rdquo;,培养学生的开放性思维。

  第二部分根据比的基本性质判断下列各题

  (1)4 :15=(4times;3):(15divide;3) ( )

  (2)3/5:4/7=(3/5times;6):( 4/7times;6) ( )

  (3)10 :15=(10divide;5):(15divide;3) ( )

  (4) 7 :9 =(7+5):(9+5) ( )

  第三部分应用比的基本性质解决生活中的问题

  师:上课前老 师统计了咱们班参加课外活动小组的人数,下面同学自己读题,然后试着解决这些问题,如果遇到困难同桌之间或小组之间可商量解决。

  我们班共有学生48人,男生28人,女生20人:

  (1)请写出我们班男生和女生的人数比,并将这个比化成最简单的整数比。

  (2)在课外小组活动中,我们班参加美术小组的人数占全班人数的1/4,参加科技小组的人数占全班人数的3/8,请写出参加美术小组和科技小组的人数比,并将这个比化成最简单的整数比。

  (3)参加体育小组的人数是舞蹈小组的1。5倍,请写出参加体育小组和舞蹈小组的人数比,并将这个比化成最简单的整数比。

  从学生熟悉的生活情境入手,把学生引入到现实情境中进行ldquo;再创造rdquo;

  活动有利于让学生感受到数学就在身边,使原来枯燥乏味的数学题有了ldquo;应用味rdquo;,使学生对数学产生浓厚的兴趣和亲切感,会用数学眼光看问题,用数学头脑想问题,增强学生用数学知识解决实际问题的意识。从而培养学生的实践能力。另外尊重学生各性,让课堂成为学生发挥个性的天地,成为自我赏识的乐园。

  第四部分思考题

  1:8=(1+4):(8+□) 6:10=(6-3):(10divide;□)

  让学生从实际出发,根据解决问题的条件作全面分析,周密思考,提高了学生全面分析及解决实际问题的能力,目的是培养学生辩证地看问题,培养学生创新精神。

  五、评价体验

  比的基本性质,是同学们通过自己主动探索,合作研究发现的,并能根据这一性质解决实际问题,回顾我们的学习过程,谁来谈谈你的收获和感受。

  这一部分是对学生学习的一种激励评价,使学生体验到主动探索,获取知识的喜悦,激发了学习兴趣,树立学习自信心。

  以上就是我对本节课的教学设计,如有不当之处敬请各们老师批评指正。

《比的基本性质》说课稿10

  一、教材

  1、教学内容:这是义务教育课程标准实验教科书数学人教版五年级下册第四单元P75的内容《分数的基本性质》。

  2、教材与前后知识间的联系:《分数的基本性质》是以分数的意义、分数与除法的关系以及整数除法中商不变的规律这些知识为基础的。同时又是后面学习约分和通分的理论依据,而约分、通分又是分数四则运算的重要基础,因此这部分内容不仅在单元中具有承前启后的作用,对学生的后继学习也有重要影响。

  3、教材重点:探究分数的基本性质的过程。理解分数的基本性质,能运用分数的基本性质。

  难点:自主探究出分数的基本性质。

  4、知识与技能目标:理解和掌握分数的基本性质,经历探索分数基本性质的过程,培养学生观察、比较、抽象、概括、类推及动手实践能力,进一步发展学生的思维。

  过程与方法目标:是学生经历观察、操作、讨论中,以自主探究、合作分享的.教学方式,让学生在交流中进一步完善对分数基本性质的理解。

  情感态度,价值观目标:让学生在主动探索新知的过程中获得成功的体验,体验数学学习的乐趣。

  二、说教学理念:

  1、以学生发展为本,着力强化主体意识。

  2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会,变学数学为做数学。

  3、改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受猜想、验证、转化等数学思想方法

  三、说教法

  主要采用创设情境,引导探究,引导自学,合作探索相结合等教法。

  四、说学法

  学生主要的学习方法是自主发现、操作体验、合作交流,有顺序的观察题、对比分析、概括总结。

  五、说教学过程

  我将创设情境,动手体验、自主探索的教学方式,指导学生运用“操作――发现法”、“观察、归纳”法进行探究。为此,我设计了四个教学环节:

  第一个环节是创设故事情境,激发学生兴趣《分数的基本性质》说课稿《分数的基本性质》说课稿。我觉得如果根据教材的安排来导入,显得有些平淡,也不容易激发学生的学习兴趣。因此我设计了一个妈妈给三个儿子分苹果的故事。妈妈分别给三个儿子分得苹果的1/2、2/4、4/8,分得的结果看似不公,实则相同。并让学生作为裁判来评一评,看谁分的多,妈妈是不是偏心。这样一来,学生学习数学的兴趣就会提高,学习的积极性也调动起来了。同时,我又把这一悬念暂时先放一放,等学生理解并掌握了分数的基本性质后,学生就会恍然大捂。原来,三个儿子分得的苹果实际上是一样多的,只不过是平均分的份数不一样的,其中表示的份数也不一样,但大小却是相等的,谁也没有吃亏。这样的设计,不仅使教学结构更加完整,前后呼应,同时也提高了学生理解和应用分数的基本性质来解决实际问题的能力。

  第二个环节是动手体验,形象感知。分数的基本性质,是以分数的大小相等这一概念为基础的。因此我让学生用三张同样大小的长方形纸代替苹果分别折出1/2、2/4、4/8,并用彩色笔涂上颜色。这样既帮助学生复习了分数的意义,又为学习新知识作了准备。接着让学生观察比较涂色部分的大小,再请学生交流,汇报实验过程及结果,使1/2=2/4=4/8这个结论让学生自己“做出来”,而不是老师讲出来。这充分体现以学生为主体,自主探索的教学理念。

  这种教学方式能有效地改变学生原有的一个整数对应一个大小的习惯性思维,初步体会到分数“形变值不变”的独特之处,提高学生的认知能力。

  第三个环节是深入探究,得出规律。这一节环节我提出问题让学生讨论:既然这三个分数大小相等,那这三个分子、分母都不相同的分数之间藏着什么秘密呢?你们能找出它们分子分母各自按照什么规律变化吗?首先,让学生自己观察,把自己的发现在小组内讨论交流,引导学生观察:从左往右得出什么规律,反过来从右往左又得出什么规律。然后请学生再举几个这样的例子,进行交流,有了这些较为丰富的感性认识,再总结出规律。最后学生们会概括得出:分数的分子和分母同时乘或者除以相同的数,分数的大小不变。(老师板书)预计学生不会把相同的数中的0除外,因此我会问同时乘和除以0也可以吗?让学生思考并得出0不能作为分母不能作为除数,所以0要除外,最后让学生重新完整的叙述一遍,老师揭示课题。最后提出问题,我们刚才是借助图联系分数的意义来说明分数的基本性质,这个性质能不能根据分数与除法的关系和商不变的性质来说明呢?启发学生用商不变的性质来说明分数的基本性质,沟通新旧知识的联系,从而培养了学生迁移能力。最后师生共同总结本节课的学习方法。

  最后一个环节是巩固新知,拓展延伸。学以致用是探究学习的又一个基本特征《分数的基本性质》说课稿教学反思。因此我精心设计了练习题。首先是题型变化丰富

  练习中,我除了安排一些基本根据分数的基本性质来填空外,我还安排了一些判断题、口答题、填图题、并要求学生不改变分数的大小,把分数改成分母是30的分数的题目。题型的丰富不仅提高了学生学习的兴趣,也使学生更好地理解和应用分数的基本性质来解决实际问题的能力。其次是练习难度的层次性。数学题目经常出现有些学生吃不了,同时也有部分学生吃不饱的现象。为此,除了基本的练习题外,我还逐步加深难度,提高学生的思维能力,如:分数的分子加上10,要使分数的大小不变,分母应该加上几?难度的加深,使学生的思维能力、解题能力等都有了明显提高,真正把培优补差工作落到了实处。

《比的基本性质》说课稿11

尊敬的各位领导,各位老师:

  大家上午好,我是来自xx小学的教师。我说课的题目是比例的意义和基本性质,下面我给大家汇报一下我的基本设想:我从教材、教法学法、教学流程,板书设计、学习评价五个方面来说。

  一、说教材我说课的内容是:

  1、说课内容:人教版义务教育课程标准实验教科书六年级下册第三单元第一课时《比例的意义和基本性质》。

  2、教材的地位和作用:这部分内容是在学生学过比的知识的基础上进行教学的,是前面“比的知识”的深化,是后面学习解比例知识的基础。它起着承前启后的作用,是进行正、反比例教学的关键,是利用比例知识解决实际问题的先决条件。

  3、教学目标的确定:通过以上分析,我以《新课程标准》为依据,结合小学数学教材编排的意图,确立以下教学目标:[知识与能力.]:理解比例的意义和基本性质,掌握判定两个比是否能组成比例的一般方法。[过程与方法]:1、通过与已学知识的联系运用,学生的已有知识得以延伸。

  2、通过教学引导,培养学生发现规律、运用规律的能力。

  [情感、态度与价值观]:

  1、在教学中采用引导学生的教学方式,培养学生探究式的学习态度。

  2、通过游戏锻炼学生思维反应能力,并培养其合作精神。

  3、通过分组竞技的方式,增强学生集体荣誉感。

  4、教学重点、难点根据教学目标我将本课的重难点定为:重点:使学生理解比例的意义和基本性质。学会用两种方法判断两个比能否组成比例。难点:应用比例的意义和基本性质判断两个比能否成比例,并能正确的组成比例5、教学准备:为了教学信息的直观呈现,我选择了多媒体课件。

  二、说教法与学法

  通过前面的学习,学生已经掌握了比的知识,初步形成了一定的观察、探索、归纳的能力。因此,我采用了“自主探究”“阅读自学”

  的教学模式,教学中贯彻自主性原则,重视学生学习和探索过程,注重学生的情感体验;组织、指导学生的探究活动,允许学生对所学知识有不同的理解和体验,培养了学生主动探索知识和概括知识的'能力。

  在合理选择教法的同时,我还会重视对学生学法的指导,使学生不仅学会还要会学。在本节课的教学中我容计算—观察、比较—概括—应用等学习方法为一体,注重对学生自主探究学习能力的培养。

  三、教学程序设计

  根据以上对教材的分析,以及教法、学法的选择,我将本课的教学设计为五个环节。

  【整体设计】

  1、复习旧知导入新课

  2、通过实例探究新知

  3、实践应用、巩固新知

  4、课堂小结、回归目标5、拓展延伸发展能力

  【环节设计】

  (一)、复习旧知,导入新课

  为了新课程更好的导入,教学前,首先复习比的知识,如什么是比?什么是比值?怎样化简比?为以下情境作铺垫。

  (1)我们知道了比的前项和后项相除的商叫做比值,你们会求比值吗?打开课本看图,让学生说一说图中的内容,找一找图中共有的东西,接着让学生写出它们的比,在这我会提示比可用两种方式表示,比的形式和分数形式。

  (2)学生已经写出了四个比,选取其中两个比,如2.4:1.6和60:40让学生求出它们的比值。设问题情境你发现了什么?让学生主动的去思考,自由回答。

  (3)顺势导入,我们已经认识了比,也知道怎样求比值。今天就根据比和比值来学习比例,并且认识比例的基本性质。(板书课题:比例的意义和基本性质)

  (二)、通过实例、探究新知

  这一环节我分为三部分教学:第一部分,教学比例的意义;第二部分.教学比例的各部分名称;第三部分,教学比例的基本性质。

  第一部分:观察这两组比的比值有什么关系?学生可以自由回答,通过学生的观察与比较,学生会发现它们的比值相等,我会引导学生可以用等号连起来,然后直接给出定义这样的式子就叫做比例。然后请学生自由总结比例的意义。之后我总结归纳表示两个比相等的式子叫做比例。

  接下来设计了练习

  下列两个比之间的哪些能填“=”,为什么?

  1:2()3:6,0.5:0.2()5:2,1.5:3()15:3通过这个练习主要目的是让学生根据比例的意义先试着从具体判断两个比是否相等入手,从而引导其归纳出比例判定的一般方法,想让学生主动去探究组成比例的关键所在,这样可以培养学生自主学习,主动思考的能力。

  前面我们已经学习了比和比例的意义,那么“比”和“比例”有什么区别?这时指名学生回答,引导学生从意义上,项数上进行对比。最后,我会归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

  第二部分:教学比例的各部分名称

  这部分的教学,我采用了阅读自学法。实施素质教育,使学生由“学会”变“会学”,这里我注重培养学生的自学能力,师生的双边关系实现从扶到放的转变。在学生自学课本时,老师写出比例的两种形式,引导学生注意内项和外项的位置。(板书80∶2=200∶5,80/2=200/5)

  第三部分:教学比例的基本性质

  观察80:2=200:5中的两个内项的积与两个外项的积的关系,引导学生把两个外项与两个内项分别相乘,比较结果。两个内项的积与两个外项的积有什么关系?再让学生归纳出比例的基本性质,我做总结。探讨写分数形式,学生能够得出以下结果。我归纳“交叉相乘”积相等。

  小结:我提问比例的基本性质可以检验组成的比例对不对?学生会回答对。我及时提问那么:4:9=5:10成立吗?学生会可能会运用比例的基本性质或比值相等的不同方法去回答。

  比例的基本性质是本课的第二个重点。为了突出重点,我引导学生计算几个比例式的内项积和外项积,实现从特殊到一般的推理方式,引导学生发现规律,概括性质。同时也渗透了实践第一的观点。

  (三)、实践应用、巩固新知

  在这我安排了三道题,第1题是对基本概念的.巩固,第2题是根据比例的基本性质写出比例,第3题是用四个数组比例,这题学生在组的过程中没有方法和顺序,那么我会在交流过程中适当引导学生发现方法,总结规律,使学生不仅把题做对,而且能够更好的解决问题。

  (四)、课堂小结,回归目标

  这一环节我利用提问的方式,让学生小组总结,并派代表发言,之后小组互相评价,看哪个小组表现的最好,我予以鼓励。

  (1)这堂课我们学习了什么?(2)什么叫比例?它的各部分名称是什么?(3)比例的基本性质是什么?(4)布置作业36页2、3题。主要目的是让学生巩固理解比例的意义和基本性质并能灵活应用。

  (五)、拓展延伸、发展能力

  (1)猜数游戏16:4=8:()(2)发展性练习

  a.能否把3×40=8×15改成比例?b.如果5a=3b,那么a:b=():()从小学生心理角度考虑,学生持续听课较长时间后,他们的注意力由集中到分散,因此我设计了猜数游戏,这样既培养了学生的学习兴趣,集中了注意力,又让学生初步知道比例的基本性质的作用,为下一节课学习解比例做一些渗透,后面两道题训练了学生的发散性思维和逆向思维,开发了学生的智力。

  四、说板书设计

  结合学生的认知水平,我将本节课的板书设计的很简洁,这样既突出了重点,又给学生留下了深刻的印象。

  五、说学习评价

  在本节课的教学中我采用了师评、互评相结合的评价方式,我注重对学生的自学能力,语言表达能力以及学习热情能力的评价,我想以此来发挥评价的激励作用。

  这是我在一次远程教育教训会上的说课稿,希望各位同仁能给予我意见和建议。专家给我的点评让我很不解,我到现在也不太清楚三维目标到底应该怎样定才是正确的,才是全乎情理的。请多多指教

《比的基本性质》说课稿12

  一、说教材

  《分数的基本性质》在分数教学中占有重要的地位,在小学数学学习中起着承前启后的作用。它既以分数的意义、分数的大小比较为基础,又与整数除法及商不变的性质有着内在的联系,更分数的约分、通分的依据,也进一步学习分数加减法计算、比的基本性质的基础。因此,分数的基本性质该单元的教学重点之一。

  二、说学情

  学生在三年级上学期已经初步认识了分数,以及同分母分数的大小。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。五年级学生已经养成了合作学习的习惯,并且已经具有了一定的分析和解决问题的能力,再加上他们所具有的一定的生活经验,因此能够在教师的引导下完成“质疑——探索——释疑——应用”这一完整的学习过程。

  三、说教学目标

  依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标:

  知识与技能:让学生亲身经历“分数基本性质”抽象概括的过程,理解和掌握分数的基本性质,并能初步运用分数的基本性质解决简单的.数学问题。

  过程与方法:让学生经历发现问题、探究问题、解决问题的全过程,在观察、猜想、验证等探索活动中,培养学生观察--探索--抽象--概括的能力以及合情推理能力,体验解决问题策略的多样性。

  情感与态度:使学生在分数基本性质的探究活动中,获得成功的体验,建立自信心,感受到数学的严谨性,及渗透事物相互联系、发展变化的辩证唯物主义观点。

  教学重点:理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。

  教学难点:让学生经历自主探索,发现和归纳分数的基本性质,并会应用分数的基本性质解决相关问题。

  教学准备:三张同样大小的长方形纸张,彩色笔

  四、说教学方法

  树立以“以学生发展为本”、“以学定教”的思想,为实现教学目标,有效地突出重点、突破难点,我遵循学生的认知规律,以建构主义学习理论为指导,在探究分数的基本性质过程中,采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。创设了一种“情境导入、动手体验、自主探索”的课堂教学形式,以“自主探究”贯穿全课,引导学生迁移旧知、大胆猜想——实验操作、验证——质疑讨论、完善猜想等,把这一系列探究过程放大,把“过程性目标”凸显出来。

  五、学法

  有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,自主探究法,合作交流的学习方式,让学生通过独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。

  六、说教学过程

  为了全面、准确地引导学生探索发现分数的基本性质,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了以下五步教学环节:

  1、创境设疑: 回顾旧知,引发思考

  2、自主探究: 动手实践,发现规律

  3、交流归纳:揭示规律,巩固深化

  4、分层精练:多层练习,多元评价

  5、感悟延伸:课堂小结,加深理解

  第一环节:创境设疑

  结合六一儿童节的到来,创设分蛋糕的情景,妈妈分得公平吗?课始便迅速地抓住了学生的好奇心,使课堂教学有了一个好的开始。鼓励学生当小法官,则极大地调动了学生的积极性,使他们在心理上产生悬念,进一步激发学生的学习兴趣,为后面的学习做好了铺垫。这样设计也从学生已有的经验和情感出发,找准新知的最佳切入点,为学生后面的联想和猜想巧设“孕伏”。

  第二环节:自主探究

  通过折纸、涂色的动手操作活动,使学生亲身经历并获得非常具体、真切的感知,为探究分子、分母的变化规律提供认知基础。教师通过五个有层次的问题,分层质疑,分层提问,分层评价,尽量地关注到了每一个层次的学生,引导学生逐步在自主探索、合作互助的学习方式中初步理解并能简单概括出分数的基本性质,并及时强调了0除外的意义,使学生体验到解决问题策略的多样性,发展学生的实践能力和创新精神,培养学生的合作意识。

  第三环节:交流归纳

  在这一环节,教师引导学生在观察与分析、探索与思考分数的基本性质的基础上不断生成新问题,通过质疑,借助知识的迁移,沟通分数的基本性质与商不变性质之间的联系。引导学生应用分数和除法的关系,以及整数除法中商不变的性质,说明分数的基本性质。这样的设计就让学生感受到了数学知识的内在联系,同时渗透“事物之间相互联系”的辨证唯物主义观点,培养学生观察--探索--抽象--概括的能力。

  第四环节:分层精练

  这个环节让学生对分数的基本性质再一次的体验,感受,研究,同时也整节课的亮点之一,练习分层,评价分层,通过分层练习,关注到每一个层次的学生,让每一个学生都有发展。教师结合本班学生的学习特点,设计了由浅入深,由易到难的练习,基本练习让90%的同学体验到了学习的快乐,综合练习让80%的同学品尝到了成功的喜悦,拓展练习则留到课后,让学生在自主探究中、讨论交流中、知识的沉淀中进一步加深对知识的理解和掌握。

  第五环节:感悟延伸

  通过小结、反思,查漏补缺,学生在交流收获、互相帮助的过程中,使学生对知识有个系统的回顾和认识,从而进一步培养学生的知识概括能力。

  总之,本节课教学坚持了“学生探索的主体”这一教学原则,面向全体学生,充分的引导学生动手实验,自主探索,质疑延伸,合作交流,让每一个学生在探索的过程中感受数学和日常生活的紧密联系,体验学习数学的快乐,培养了创新精神和实践能力。

《比的基本性质》说课稿13

尊敬的各位领导,老师们:

  大家好!今天,我很高兴能站在这里,向大家展示我的说课。我的说课内容是《分数的基本性质》。我将从以下这些方面来进行说明。

  一、教材分析(课件)

  《分数的基本性质》是人教版九年义务教育小学数学第十册中的内容。本节课内容是在分数的意义,以及分数与除法关系的基础上进行教学的。是后面进一步学习约分、通分以及分数运算的重要依据,因此本节内容将起着举足轻重的作用。

  二、教学目标(课件)

  根据教材内容及学生的认知水平,我制定了以下教学目标:

  1..使学生理解与掌握分数的基本性质。

  2.培养学生观察、比较、分析、概括等方面的能力。

  三、教法和学法(课件)

  为了使学生成为课堂的主人,我巧妙的扮演着引导着、组织者的角色。设计了情景设疑、观察发现、小组合作的教学方法。

  新课程标准提倡:过程重于结果。有效的数学活动不能单纯的依靠模仿与记忆。因此我引导学生去动手操作,自主探究,游戏比赛等形式来组织教学。

  四、教学过程(课件)

  结合五年级学生的理解能力和年龄特征,我将本课的教学,设计了四个环节。

  (一)、创设情境、引发猜想(课件)

  首先、我为学生带来了一个猴王分饼的故事:猴山上的猴子们都爱吃猴王做的饼。一天,猴王做了三张同样大的饼。猴王把第一张饼平均切成了两块,给了猴1一块。(课件)猴2看见了,眼馋的说:“猴王,猴王,我要两块。”猴王笑眯眯的说:“别急,别急,给你两块。”只见猴王把第二张饼平均分成了四块,给了猴2两块。(课件)猴3更贪心:“我要六块,我要六块。”猴王想了想,把第三张饼拿出来,平均切成了十二块,果真给了猴3六块。

  “同学们,你们听完故事后,觉得哪知猴子分得饼最多?”

  一上课,先听一段故事,学生们自然非常乐意,并会立即被吸引,积极的思考故事中的问题。通过这样的故事设疑,马上激起了学生探求新知的欲望。

  (二)、动手操作、初步感知(课件)

  我让学生把准备好的`三张圆片,拿出来代替猴王做的饼,分别按照折,画,涂的步骤,表示出每只猴子所得的饼,并用分数表示涂色部分。在这个过程中,学生必然会对那三个图形进行观察和比较,从中有所发现。(课件)通过多媒体的直观演示,学生更加确定,三只猴子分的饼确实一样多,有了实物的直观对比,学生不难理解,三个分数大小相等。可是为何分数的分子、分母不同,大小却相等?在此处,又设下悬疑,充分调动了学生的好奇心。这一情境的设置,主要是让学生在动手操作过程中不仅复习了分数的意义,为下面导入新知作好铺垫、迁移。并且在教学一开始,就能抓住学生爱动手以及直观思维的特点,营造出良好的学习开端。接着,我因势利导,安排下一环节:

  (三)比较归纳、揭示规律(课件)

  (1)我板书这组分数后,请学生观察:从左往右看,分子是怎么变的?分母是怎样变的?此时我将主动权全都交给了学生,先独立思考,然后在四人小组中交流讨论,最后汇报结果。有的小组认为分子加了1,分母加了2等。我都笑而不答。而是鼓励学生逐一去验证各种猜想是否具有规律性。使学生在探索中发现,在发现中成长。直到有些学生发现分数的分子分母同时乘了2和3时,我及时给予了肯定和表扬。此时,为了突破本节课的重难点,我设计了一道填空题,可以很好的引导学生概括出这一发现,并让多名学生说一说。这样的设计,既培养了学生的概括能力,并为进一步学习增强了信心。在此基础上,我再布置一个任务:你再从右往左看,又有什么规律?有了前面的经验,这时学生很快得出:分数的分子、分母同时除以一个相同的数,分数的大小也不变。

  (2)就在学生享受成功的喜悦时,我抛出了一个问题:分数的分子分母如果同时乘或除以0,会是什么结果?学生顿时领悟:要0除外。

  (3)最后,我建议学生用一句话来归纳这两个发现,师生共同完善规律。此时我才板书课题,并告诉学生这一规律就叫分数的基本性质,使学生明确了本节课的教学内容。

  (4)现在,学生明白了聪明的猴王原来是利用分数的基本性质来分饼的。即满足了猴子们的要求,又分的那么公平。(课件)如果猴4想要八块怎么办?如此设计,既首尾呼应,又培养了学生灵活解决实际问题的能力。

  课堂的高潮之后,我启发学生还可以用商不变的性质来说明分数的基本性质,沟通新旧知识的联系。

  (四)多层联系、巩固深化

  练习的设计是巩固新知最有效的方法。我尽量给枯燥的练习赋予丰富多彩的形式。因此我精心设计的整套练习都是以游戏加比赛的方式来进行。(课件)首先,我安排男、女生以抢答的形式,来填空,重点要让学生说出解题依据。接着,我又设计了师生互动的游戏:我的分子填4,你的分母填多少?我的分母填48,你的分子填多少?最后在两个小组抢摘苹果的游戏中结束本节课的教学活动。

  五、板书设计

  说说我的板书设计,它遵循了目的性原则、概括性原则、直观性原则,能帮助学生把整堂课的学习内容融入大脑。

  总结:我在整堂课的设计中努力体现“趣”“实”“活”三个字。以猴王分饼为主线,贯穿全文。由情景导入到动手操作,自主探究,最后归纳规律,使学生不仅学到科学的探究方法,而且体验到探索的乐趣,领略成功的喜悦。新课程标准的要求得到了完美体现。

  我的说课到此结束,谢谢大家。

《比的基本性质》说课稿14

  分数的基本性质

  1、使学生理解和掌握分数的基本性质,能应用“性质”解决一些简单问题。

  2、培养学生观察、分析、思考和抽象、概括的能力。

  3、渗透“形式与实质”的辩证唯物主义观点,使学生受到思想 教育 。

  教学 过程

  一、好的,让我来为您修改这段内容:在前面的学习中,我们已经了解了分数的概念,知道了真分数、假分数和带分数的含义,也学会了假分数与带分数、整数之间的转化方法。今天我们将继续深入学习分数相关的知识。

  二、导入新课例1、用分数表示下面各图中的阴影部分,并比较它们的大小。

  1、分别出示每一个圆,让学生说出表示阴影部分的分数。

  (1)把这个圆看做单位1,阴影部分占圆的几分之几?

  (2)同样大的圆,阴影部分占圆的几分之几?

  (3)同样大的圆,阴影部分用分数表示是多少?

  2、观察比较阴影部分的大小:

  (1)从4幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等。)

  (2)阴影部分的大小相等,可以用等号连接起来。

  3、分析、推导出表示阴影部分的分数的大小也相等:

  (1)这4幅图中阴影部分的面积相等。那么,这意味着这4个分数的大小也相等。

  (2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来)。

  4、观察、分析相等的分数之间有什么关系?

  (1)观察转化成,的分子、分母发生了什么变化?(的分子、分母都乘上了2或的分子、分母都扩大了2倍。)

  (2)观察例2、比较的大小。

  1、出示图:我们在三条同样的数轴上分别表示这三个分数。

  2、观察数轴上三个点的位置,比较三个分数的大小:从数轴上可以看出:

  3、这三个分数在形式上看起来不同,但实质上它们都是相等的。我们可以通过不同的方法将它们转化为相等的形式。让我们一起探讨一下这三个分数之间的联系和变化规律。

  三、抽象概括出分数的基本性质

  1、对比前面两道例题,我们发现一个规律:如果分数的分子和分母同时乘以或除以相同的数(零除外),那么分数的值不会改变。这说明分数的大小只与分子和分母的比例有关,与具体数值无关。

  2、为什么要“零除外”?

  3、教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”(板书:“基本性质”)

  4、谁再说一遍什么叫分数的.基本性质?教师板书字母公式:

  四、应用分数基本性质解决实际问题

  1、分数的基本性质和我们以前学过的除法中商不变的性质非常相似。在分数中,分子和分母的比例关系是固定的,无论分数怎么化简或扩大,这个比例关系始终保持不变。这和除法中商不变的性质类似,无论被除数和除数怎么变化,商始终保持不变。这些性质都体现了数学中的一种稳定性和规律性。

  (1)商不变的性质是什么?(除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变。)

  (2)分数的基本性质是我们学习分数的重要内容,通过掌握这些性质,可以更深入地理解分数,并且能够灵活运用这些性质解决各种与分数相关的问题。比如,我们可以利用分数的性质进行除法简便运算,解决小数除法的问题。另外,我们还可以通过分数的性质将一个分数化成分母为12且大小不变的分数,这样可以更方便地进行计算。

  板书:

  教师提问:

  (1)?为什么?依据什么道理?(,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6、所以,)

  (2)这个“6”是怎么想出来的?(这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)

  (3)?为什么?依据的什么道理?(,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以,)

  (4)这个“2”是怎么想出来的?(这样想:24÷?=12,24÷“2”=12、也可以想24是12的2倍,那么分子10也应是新分子的2倍,所以新的分子应是10÷2=5)

  五。课堂练习

  1、把下面各分数化成分母是60,而大小不变的分数。

  2、把下面的分数化成分子是1,而大小不变的分数。

  3、在里填上适当的数。

  4、的分子增加2,要使分数 的大小不变,分母应该增加几?你是怎样想的?

  5、请同学们想出与相等的分数。规律:这个分数的值是,然后只要按自然数的顺序说出分子是1、2、3、4、……分母是分子的4倍为:4、8、12、16……无数个。

  六、课堂总结

  今天我们学习了分数的基本性质以及分数的四则运算。通过学习,我们明白了分数是用来表示一个整体被等分成若干份的数,分子表示被分的部分,分母表示总共被分成的份数。在进行分数的加减乘除运算时,我们需要根据分数的基本性质,如同分母相同可以直接加减,分子乘分子、分母乘分母等规则进行计算。这是学习分数四则运算的基础,需要认真掌握。

  七、课后作业

  1、指出下面每组中的两个分数是相等的还是不相等的。

  2、在下面的括号里填上适当的数。

《比的基本性质》说课稿15

  一、说教材

  1、说教学内容:

  《比例的意义和基本性质》人教版教材数学六年级下册第三单元的内容,在第41页例2及课堂活动,第51页练习六中的第1、2、3题。

  2、教材的地位与作用:

  比例的知识在工农业生产和日常生活中有广泛的应用。这部分知识是在学习了比的知识和除法、分数等基础上教学的。本节课内容是这个单元的第一节课,主要属于概念教学,是为以后解比例,讲解正、反比例做准备的。学生学好这部分知识,不仅可以初步接触函数的思想,而且可以用来解决日常生活中一些具体的问题。

  3、教学目标的确定

  《新课程标准》明确了义务教学阶段数学课程的总目标应以知识与技能、过程与方法、情感和态度三方面来阐述,使学生得到充分、自由、和谐、全面地发展。因此,以《新课程标准》为依据,结合小学数学教材编排的意图,确立以下教学目标:

  (1)知识与技能

  ①理解比例的意义,认识比例各部分名称,理解并掌握比例的基本性质。

  ②能运用比例的意义或基本性质判断两个比能否成比例,并会组比例。

  ③运用相关知识解决问题,提高解决问题的能力。

  (2)过程与方法

  引导学生通过观察、比较、计算、交流探索新知。

  (3)情感、态度与价值观

  在自主学习过程中体验发现数学规律的乐趣,培养学生用数学知识解决实际问题的能力。

  4.教学重难点

  教学重点:理解比例的意义与基本性质。

  教学难点:运用比例的意义或性质判断两个比能否组成比例,并能正确地组比例。

  5、教法、学法:

  根据本节教材内容和编排特点,为了更好地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,主要让学生在“计算——观察、比较——概括——应用”的学习过程中掌握知识。

  二、说程序设计

  “比例的意义和基本性质”的学习基础是“比的意义和基本性质”,学生在单纯理解“比例的意义和基本性质”上没有多少困难,但是比和比例的意义容易混淆,基于此,我作了如下的教学设计。

  (一)在引入上我直接提示课题,引起生对学过的比的知识的回忆。

  “比例的意义和基本性质”的学习基础是“比的意义和基本性质”, 我注重从学生已有的知识出发,让学生复习了比和求比值的知识,比的基本性质,让生在复习旧知的基础上自然过渡到新知识的学习,让学生初步感到新旧知识的联系,在这种情景下,用出示例1进入对新知识的学习。

  (二)教学新课

  教学比例的基本性质,我采用小组合作学习方式,自主探究比例的基本性质。这样引导学生通过自己的努力去发现比例的秘密,整个环节力求体现学生自主探索、独立思考、合作交流的学习过程,从而提高学生的数学学习能力。教学完比例的基本性质后,告诉学生,判断两个比能否组成比例,除了根据比例的.意义,也可根据比例的基本性来判断,为巩固练习一作一个铺垫提示。

  (三)课堂活动

  书上第50页,要求小组合作完成,改变了书中“任意抽出4张”的要求为“任意选出4个数字组成比例”,给学生足够的时间写比例,交流写法。

  设计意图:巩固运用比例的意义和基本性质的知识,让学生在玩中学,激发学生的学习兴趣,鼓励学生小组合作的意识。

  (四)巩固练习,形成技能

  1、基本训练

  (1)练习中的第1题,可用不同的方法来判断,先让学生独立判断,再全班交流。让学生在交流中互相学习。

  (2)练习中的第3题,这儿的设计意图应该是:让学生根据当前所学的知识猜数,一方面巩固比例的意义和基本性质的知识,另一方面,为下节课“解比例”做铺垫:根据比例的基本性质,如果知道了比例中的任何三项,就可以求出另外一项,这是为下节课 “解比例”作准备。

【《比的基本性质》说课稿】相关文章:

《比的基本性质》说课稿05-20

《分数的基本性质》说课稿06-08

分数基本性质说课稿02-09

分数的基本性质说课稿01-17

分数的基本性质说课稿范文03-25

《分数的基本性质》说课稿15篇12-14

小数的性质说课稿06-25

《分数的基本性质》教案09-10

分数的基本性质教案05-22